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On metrics satisfying equationRij − 1
2Kgij = Tij for

constant tensorsT �
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Abstract

Necessary and sufficient conditions are given on a constant symmetric tensorTij onRn,n ≥ 3, for
which there exist metrics̄g, conformal to a pseudo-Euclidean metricg, such thatR̄ij − 1

2K̄ḡij = Tij ,
where R̄ij and K̄ are the Ricci tensor and the scalar curvature ofḡ. All solutions ḡ are given
explicitly and it is shown that there are no complete metricsḡ conformal and nonhomothetic tog.
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In the problem section of the Seminar on Differential Geometry edited by Yau [9], the
first problem on Ricci curvature is the following:

Find necessary and sufficient conditions on a symmetric tensorTij on a compact manifold
so that one can find a metricgij to satisfyRij − 1

2Kgij = Tij , whenceRij is the Ricci tensor
andK is the scalar curvature ofgij .

If gij is the Lorentz metric on a four-dimensional manifold, this is simply the Einstein field
equation. Whenever the tensorT represents a physical field such as electromagnetic field
perfect fluid type, pure radiation field and vacuum(T = 0), the above equation has been
studied in several papers, most of them dealing with solutions which are invariant under
some symmetry group of the equation (see [5] for details). When the metricg is conformal
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to the Minkowski space–time, then the solutions in the vacuum case are necessarily flat
and apparently not known explicitly (see [5]). In the remaining cases, all the solutions
conformal to the Minkowski metric are known. We refer to [6] for the pure radiation or
the null electromagnetic field, to [2,8] for the non-null electromagnetic field, and finally to
[1,8] if T is a perfect fluid. Besides these special results, as far as we know, very little is
known about problem (P) with respect to other manifolds, its dimension or the tensorT .

Our purpose in this paper is to solve problem (P) inRn, n ≥ 3, for constant symmetric
tensors of the form

T =
n∑

i,j=1

εj cij dxi ⊗ dxj with cij ∈ R and εj cij = εicji (1)

requiring the metric to be conformal to the pseudo-Euclidean metric(Rn, g), gij = δijεi ,
εi = ±1, where at least one eigenvalueεi is positive. We want to find metrics̄g such that

ḡ = 1

ϕ2
g, Ric ḡ − K̄

2
ḡ = T . (2)

Before stating our results, we observe that since dimensions higher than 4 are considered in
some theories in Physics, it is important to treat this problem in any dimension. Moreover,
T being a constant tensor in the standard coordinates ofRn is not a property preserved
under a change of coordinates. The requirement of being constant in our paper implies that
T is covariantly constant in the standard flat metricg. However,T in general will not be
covariantly constant in the metric̄g conformal tog.

We consider the linear functionsβi,1 ≤ i ≤ n defined for eachx = (x1, . . . , xn) ∈ Rn
by βi(x) = (n − 1)(n − 2)xi − (n − 3)

∑n
k=1xk. For a fixed pseudo-Euclidean metric

gij = δijεi , we consider the following subsets ofRn:

D = {x ∈ Rn; εjβj (x) ≥ 0 ∀j,1 ≤ j ≤ n},
L = {x ∈ Rn; εjβj (x) ≤ 0 ∀j,1 ≤ j ≤ n},
πi = {x ∈ Rn;βi(x) = 0}, 1 ≤ i ≤ n.

D andL are nonempty subsets ofRn. With this notation we can now state our results.

Theorem 1. Let(Rn, g)be a pseudo-Euclidean space and let T be a nondiagonal symmetric
tensor as in(1) such that

∑
icii �= 0. Then there exists a metric̄g solving(2) if and only if

c = (c11, . . . , cnn) ∈ D \ {π� ∪ πk} for some� �= k and

cij = εjγiγj

(n− 1)(n− 2)

√
εiεjβiβj (c) ∀i �= j, (3)

whereγj = ±1 for 1 ≤ j ≤ n. For any such fixed tensor T, the solutions areḡ = g/ϕ2,
where

ϕ(x) = k exp


 δ

(n− 2)
√
(n− 1)

∑
j

γj

√
εjβj (c)xj


 , (4)

where k is a nonzero constant andδ = ±1.
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In Theorem 1, for eachc ∈ D \ {π� ∪ πk}, expressions (3) define at least two and
generically 2n−1 tensorsT .

Theorem 2. If T be a nondiagonal tensor as in(1) such that
∑
icii = 0, then there exists

ḡ solving(2), if and only ifc = (c11, . . . , cnn) ∈ (D ∪ L) \ {π� ∪ πk} for some� �= k and

cij =
{
εjγiγj

√
εiεj cii cjj ∀i �= j if c ∈ D \ {π� ∪ πk},

−εjγiγj√εiεj cii cjj ∀i �= j if c ∈ L \ {π� ∪ πk},
(5)

whereγj = ±1 for 1 ≤ j ≤ n. In this case, for any such fixed tensor T, K̄ = 0. Moreover,
the functionϕ is constant if g is the Euclidean metric and otherwise it is given by

ϕ(x) =


k1 exp

(∑
j hj (xj )

)
+ k2 exp

(
−∑j hj (xj )

)
if c ∈ D \ {π� ∪ πk},

k1 cos
(∑

j hj (xj )
)

+ k2 sin
(∑

j hj (xj )
)

if c ∈ L \ {π� ∪ πk}
(6)

and

hj (xj ) =




√
εj cjjγjxj√
n− 2

if c ∈ D \ {π� ∪ πk},
√−εj cjjγjxj√

n− 2
if c ∈ L \ {π� ∪ πk}.

(7)

The functionsϕ given in Theorem 2 satisfy�gϕ = ‖∇gϕ‖2 = 0.

Theorem 3. If T = ∑n
i=1εicii dx2

i is a nonzero diagonal tensor, then there exists a solution
ḡ of (2) if and only if

T =



bεk dx2

k if n = 3,

b
∑n
i �=k,i=1εi dx2

i + n− 1

n− 3
bεk dx2

k if n ≥ 4
(8)

for some fixed k, 1 ≤ k ≤ n, where b is a real constant such thatbεk > 0. In this case,

ḡij =



δijεi exp(a − 2δ

√
bεkxk) if n = 3,

δijεi exp

(
a − 2δ

√
2bεk

(n− 2)(n− 3)
xk

)
if n ≥ 4,

(9)

whereδ = ±1 anda ∈ R.

Theorem 4. If T = 0, then there exists a solution̄g of (2) if and only if

ϕ =
n∑
j=1

(Aεjx
2
j + Bjxj + Cj ), where 4A

∑
j

Cj −
∑
j

εjB
2
j = 0 (10)

andA, Cj , Bj are real constants. In this case, K̄ ≡ 0, i.e.Ric ḡ ≡ 0.
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As a consequence of the above theorems, we obtain the following corollary.

Corollary 5. Let(Rn, g) be a pseudo-Euclidean space. For any constant symmetric tensor
T, there are no complete metricsḡ, conformal and nonhomothetic to g, such thatRic ḡ −
1
2K̄ḡ = T .

The techniques used to prove our results are similar to those introduced in [7]. We first
recall a well-known result (see for example [4]) that ifḡ = g/ϕ2, then

Ric ḡ − Ricg = 1

ϕ2
{(n− 2)ϕ Hessg(ϕ)+ (ϕ�gϕ − (n− 1)‖∇gϕ‖2)g}.

Hence the scalar curvaturēK = ∑
ḡij R̄ij is given byK̄ = (n − 1)(2ϕ�gϕ − n‖∇gϕ‖2).

Therefore, one proves that solving problem (2) is equivalent to studying the system

ϕxixi = εi

(
λiϕ + ‖∇gϕ‖2

2ϕ

)
,1 ≤ i �= j ≤ n, ϕxixj = εj cij

n− 2
ϕ, (11)

whereλi = cii/(n − 2) −∑
�c��/(n − 1)(n − 2). If ϕ is a solution of (11), then one can

show that

cjiϕxi = βi(c)

(n− 1)(n− 2)
ϕxj ∀i �= j. (12)

Using (11) and (12), we can prove that ifT is nondiagonal andϕ is a solution of (11), then
‖∇gϕ‖2/2ϕ = −∑kλkϕ/(n−2). It follows from this equation that the diagonal elements of
T are such thatc = (c11, . . . , cnn) ∈ (D∪L)\{πr∪π�} for some pair(r, �),1 ≤ r �= � ≤ n,
and the nondiagonal elements are determined byc as in (3).

If
∑
icii �= 0, andc ∈ L \ {πr ∪π�}, thenϕ = 0, hence we conclude that in this case,c ∈

D\{πr ∪π�} andϕ is given by (4). If
∑
icii = 0, then (11) reduces toϕxixi = εiciiϕ/(n−2)

andϕxixj = εj cijϕ/(n − 2) for i �= j . Therefore, one can show thatϕ is given by (6) and
the elements ofT satisfy (5).

In order to prove Theorem 3, we observe that ifT is a nonzero diagonal tensor, it follows
from (12) thatϕ is not constant and 0= βi(c)ϕxj∀i �= j . Let k be such thatϕxk �= 0. If
n ≥ 4, then for alli �= k, cii = b, whereb �= 0 is a real constant andβi = 0. We conclude
thatckk = (n− 1)b/(n− 3). If n = 3, thencii = 0 for all i �= k andckk = b �= 0. In both
cases,ϕ depends only onxk. Therefore,T is given by (8) and the system (11) reduces to
ordinary differential equations whose solution providesḡ as in (9).

The proof of Theorem 4 follows immediately from the fact thatϕ satisfies the system of
Eq. (11), whereλi = 0 for all i.

The converse of Theorems 1–4 follows from a straightforward computation.
For each fixed tensorT as in Theorem 1 or 3, there exists two semi-Riemannian metrics

(given byδ = ±1) in the same conformal class which have pointwise the same Ricci tensor.
Since they are not homothetic to each other, it follows from the results of [3,4] that they
are not complete. A similar argument applies to the metrics obtained in Theorem 2 when
c ∈ D \ {π� ∪πk}. In the remaining cases, the metricḡ = g/ϕ2 has singularity points. This
completes the proof of Corollary 5.
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